
SCHEME(1) SCHEME(1)

NAME
Chez Scheme
Petite Chez Scheme

SYNOPSIS
scheme [options] file ...
petite [options] file ...

DESCRIPTION
Chez Schemeis a high-performance implementation of R6RS Scheme with numerous extensions. Chez
Schemecompiles source expressionsincrementally, providing the speed of compiled code in an interactive
system.

Petite Chez Schemeis a freely distributable interpreted version ofChez Schemethat may be used as a run-
time environment forChez Schemeapplications or as a stand-alone Scheme system.With the exception
that the compiler is not present,Petite Chez Schemeis 100% compatible withChez Scheme. Interpreted
code is fast inPetite Chez Scheme, but generally not nearly as fast as compiled code.

Scheme is normally used interactively. The system prompts the user with a right angle bracket (“>”) at the
beginning of each input line.Any Scheme expression may be entered. The system evaluates the expression
and prints the result. After printing the result, the system prompts again for more input. The user can exit
the system by typing Control-D or by using the procedureexit.

COMMAND-LINE OPTIONS
Chez Schemerecognizes the following command line options:

-q, --quiet Suppress greeting and prompts.

--script file Runfile as a shell script.

--program file Run rnrs program infile as a shell script.

--libdirs dir:... Set library directories todir:....

--libexts ext:... Set library extensions toext:....

--compile-imported-libraries
Compile libraries before loading them.

--import-notify Enable import search messages.

--optimize-level 0 | 1 | 2 | 3
Set optimize level to 0, 1, 2, or 3.

--debug-on-exception
On uncaught exception, call debug.

--eedisable Disables the expression editor.

--eehistory off | file
Set expression-editor history file or disable restore and save of history.

--rev ert-interaction-semantics
Use old interaction semantics.

-b file, --boot file
Load boot code fromfile.

--verbose Trace boot search process.

--version Print version and exit.

--help Print brief command-line help and exit.

-- Pass all remaining command-line arguments through to Scheme.

The following options are recognized but cause the system to print an error message and exit because saved
heaps are not presently supported.

March 2010 Cadence Research Systems 1

SCHEME(1) SCHEME(1)

-h file, --heap file

-s[level] file, --saveheap[level] file

-c, --compact

WAITERS and CAFES
Interaction of the system with the user is performed by a Scheme program called awaiter, running in a pro-
gram state called acaf ́e. The waiter merely prompts, reads, evaluates, prints and loops back for more. It is
possible to open up a chain ofChez Schemecaf ́es by invoking thenew-cafeprocedure with no arguments.
New-cafe is also one of the options when an interrupt occurs. Each café has its own reset and exit proce-
dures. Exitingfrom one caf́e in the chain returns you to the next one back, and so on, until the entire chain
closes and you leave the system altogether. Sometimes it is useful to interrupt a long computation by typ-
ing the interrupt character, enter a new caf ́e to execute something (perhaps to check a status variable set by
computation), and exit the café back to the old computation.

You can tell what level you are at by the number of angle brackets in the prompt, one for level one, two for
level two, and so on. Three angle brackets in the prompt means you would have to exit from three caf́es to
get out ofChez Scheme. If you wish to abort fromChez Schemeand you are several caf́es deep, the proce-
dureabort leaves the system directly.

You can exit the system by typing the end-of-file character (normally Control-D) or by using the procedure
exit. Typing Control-D is equivalent to (exit), (exit (void)), or (exit 0), each of which is considered a “nor-
mal exit”.

DEBUGGER
Ordinarily, if an exception occurs during interactive use of the system, the default exception handler dis-
plays the condition with which the exception was raised, saves it for possibly later use by the debugger, and
prints the message ‘‘type (debug) to enter the debugger.’’ Once in the debugger, the user has the option of
inspecting the raise continuation, i.e., the stack frames of the pending calls. When an exception occurs in a
script or top level program, or when the standard input and/or output ports are redirected, the default excep-
tion handler does not save the continuation of the exception and does not print the ‘‘type (debug)’’ message.

If the parameter debug-on-exception is set to #t, however, the default exception handler directly invokes
debug, whether running interactively or not, and even when running a script or top-level program. The
“--debug-on-exception” option may be used to set debug-on-exception to #t from the command line, which
is particularly useful when debugging scripts or top-level programs run via the “--script” or “--program”
options.

None of this applies to exceptions raised with a non-serious (warning) condition, for which the default
exception handler simply displays the condition and returns.

KEYBOARD INTERRUPTS
Running programs may be interrupted by typing the interrupt character (normally Control-C).In response,
the system enters a break handler, which prompts for input with a “break>” prompt.Several commands
may be issued to the break handler, including “e” to exit from the handler and continue, “r” to reset to the
current caf́e, “a” to abortChez Scheme, “n” to enter a new caf ́e, “i” to inspect the current continuation, and
“s” to display statistics about the interrupted program.While typing an expression to the waiter, the inter-
rupt character simply resets to the current café.

EXPRESSION EDITOR
When Chez Schemeis used interactively in a shell window, the waiter’s “prompt and read” procedure
employs an expression editor that permits entry and editing of single- and multiple-line expressions, auto-
matically indents expressions as they are entered, and supports name-completion based on the identifiers
defined in the interactive environment. Theexpression editor also maintains a history of expressions typed
during and across sessions and supports tcsh(1)-like history movement and search commands. Other edit-
ing commands include simple cursor movement via arrow keys, deletion of characters via backspace and
delete, and movement, deletion, and other commands using mostly emacs key bindings.

The expression editor does not run if the TERM environment variable is not set, if the standard input or out-
put files have been redirected, or if the --eedisable command-line option has been used.The history is

March 2010 Cadence Research Systems 2

SCHEME(1) SCHEME(1)

saved across sessions, by default, in the file “$HOME/.chezscheme_history”. The --eehistory command-
line option can be used to specify a different location for the history file or to disable the saving and restor-
ing of the history file.

Ke ys for nearly all printing characters (letters, digits, and special characters) are “self inserting” by default.
The open parenthesis, close parenthesis, open bracket, and close bracket keys are self inserting as well, but
also cause the editor to “flash” to the matching delimiter, if any. Furthermore, when a close parenthesis or
close bracket is typed, it is automatically corrected to match the corresponding open delimiter, if any.

Ke y bindings for other keys and key sequences initially recognized by the expression editor are given
below, org anized into groups by function.Some keys or key sequences serve more than one purpose
depending upon context. For example, tab is used both for identifier completion and for indentation.Such
bindings are shown in each applicable functional group.

Multiple-key sequences are displayed with hyphens between the keys of the sequences, but these hyphens
should not be entered. When two or more key sequences perform the same operation, the sequences are
shown separated by commas.

Newlines, acceptance, exiting, and redisplay:

enter, ˆM accept balanced entry if used at end of entry;
else add a newline before the cursor and indent

ˆJ acceptentry unconditionally
ˆO insertnewline after the cursor and indent
ˆD exit from the waiter if entry is empty;

else delete character under cursor
ˆZ suspendto shell if shell supports job control
ˆL redisplayentry
ˆL-ˆL clearscreen and redisplay entry

Basic movement and deletion:

left, ˆB move cursor left
right, ˆF move cursor right
up, ˆP move cursor up; from top of unmodified entry,

move to preceding history entry.
down, ˆN move cursor down; from bottom of unmodified entry,

move to next history entry.
ˆD deletecharacter under cursor if entry not empty;

else exit from the waiter.
backspace, ˆH delete character before cursor
delete deletecharacter under cursor

Line movement and deletion:

home, ˆA move cursor to beginning of line
end, ˆE move cursor to end of line
ˆK, esc-k delete to end of line or, if cursor is at the end

of a line, join with next line
ˆU deletecontents of current line

When used on the first line of a multiline entry of which only the first line is displayed, i.e., immediately
after history movement, ˆU deletes the contents of the entire entry, like ˆG (described below).

Expression movement and deletion:

esc-ˆF move cursor to next expression
esc-ˆB move cursor to preceding expression
esc-] move cursor to matching delimiter
ˆ] flashcursor to matching delimiter
esc-ˆK, esc-delete delete next expression
esc-backspace, esc-ˆH delete preceding expression

March 2010 Cadence Research Systems 3

SCHEME(1) SCHEME(1)

Entry movement and deletion:

esc-< move cursor to beginning of entry
esc-> move cursor to end of entry
ˆG deletecurrent entry contents
ˆC deletecurrent entry contents; reset to end of history

Indentation:

tab re-indentcurrent line if identifier prefix not
just entered; else insert identifier completion

esc-tab re-indentcurrent line unconditionally
esc-q, esc-Q, esc-ˆQ re-indent each line of entry

Identifier completion:

tab insertidentifier completion if just entered
identifier prefix; else re-indent current line

tab-tab show possible identifier completions at end of
identifier just typed, else re-indent

ˆR insertnext identifier completion

If at end of existing identifier, i.e., not one just typed, the first tab re-indents, the second tab inserts identifier
completion, and the third shows possible completions.

History movement:

up, ˆP move to preceding entry if at top of unmodified
entry; else move up within entry

down, ˆN move to next entry if at bottom of unmodified
entry; else move down within entry

esc-up, esc-ˆP move to preceding entry from unmodified entry
esc-down, esc-ˆN move to next entry from unmodified entry
esc-p searchbackward through history for given prefix
esc-n searchforward through history for given prefix
esc-P searchbackward through history for given string
esc-N searchforward through history for given string

To search, enter a prefix or string followed by one of the search key sequences. Follow with additional
search key sequences to search further backward or forward in the history. For example, enter “(define”
followed by one or more esc-p key sequences to search backward for entries that are definitions, or
“(define” followed by one or more esc-P key sequences for entries that contain definitions.

Word and page movement:

esc-f, esc-F move cursor to end of next word
esc-b, esc-B move cursor to start of preceding word
ˆX-[move cursor up one screen page
ˆX-] move cursor down one screen page

Inserting saved text:

ˆY insertmost recently deleted text
ˆV insertcontents of window selection/paste buffer

Mark operations:

ˆ@, ˆspace, ˆˆ set mark to current cursor position
ˆX-ˆX move cursor to mark, leave mark at old cursor
ˆW deletebetween current cursor position and mark

Command repetition:

esc-ˆU repeatnext command four times
esc-ˆU-n repeat next commandn times

March 2010 Cadence Research Systems 4

SCHEME(1) SCHEME(1)

TOP-LEVEL ENVIRONMENT SEMANTICS
Upon startup, the “interaction environment” used to hold the top-level bindings for user-defined variables
and other identifiers contains an initial set of bindings, some standard and some specific toChez Scheme.
Any initial identifier binding may be replaced by redefining the identifier with a normal top-level definition.
For example, the initial binding forconscan be replaced with one that performs a ‘‘reverse cons’’ as fol-
lows.

(define cons (lambda (x y) (import scheme) (cons y x)))

Code entered into the REPL or loaded from a file prior to this point will still use the original binding for
cons. If you want it to use the new binding, you must reenter or reload the code. Furthermore, the initial
bindings for variables like consare immutable, so you cannot assign one (e.g., via set! or trace) without first
defining it. This is a change from how earlier versions of Chez Scheme (Version 7 and before) treated vari-
ables (but not keywords). If you prefer the Version 7 semantics, use the “--revert-interaction-semantics”
command-line option or type (revert-interaction-semantics) before doing anything else. The new semantics
has some advantages over the old semantics, however. Because the initial set of bindings are immutable
and have known values, the compiler can generate better code and sometimes produce better compiler
warnings about incorrect argument counts.With the new semantics, the system can assume, for example,
say,consreally is cons, check to make sure it receives the expected two arguments at compile time, and
generate inline code to allocate the pair. This is not the case with the old semantics, where the compiler
had to assume that the value ofconscould change at any time during a program run.

COMMAND-LINE FILE ARGUMENTS
In the normal mode of operation, the file names on the command line (except for the arguments to the vari-
ous command-line options) are loaded beforeChez Schemebegins interacting with the user. Each of the
expressions in the loaded files is executed just as if it were typed by the user in response to a prompt.If
you wish to load a set of definitions each time, consider setting up a shell script to load the file “.schemerc”
from your home directory:

scheme ${HOME}/.schemerc $*

If you have a substantial number of definitions to load each time, it might be worthwhile to compile the
.schemerc file (that is, compile the definitions and name the resulting object file .schemerc).

Typically, a Scheme programmer creates a source file of definitions and other Scheme forms using an editor
such asvi(1), emacs(1), or the SWL (Scheme Widget Library) user interface and loads the file into Scheme
to test them. The conventional filename extension forChez Schemesource files is.ss. Such a file may be
loaded during a session by typing (load “filename”), or by specifying the filename on the command line as
mentioned above. Any expression that may be typed interactively may be placed in a file to be loaded.

SCHEME SCRIPTS
When the “--script” option is used, the named file is treated as a Scheme shell script, and the script name
and remaining command-line arguments are made available via the parameter “command-line”.To support
executable shell scripts, the system ignores the first line of a loaded script if it begins with #! followed by a
space or forward slash.For example, the following script prints its command-line arguments.

#! /usr/bin/scheme --script
(for-each
(lambda (x) (display x) (newline))
(cdr (command-line)))

RNRS TOP-LEVEL PROGRAMS
The “--program” option is like the “--script” option except that the script file is treated as an RNRS top-
level program. Thefollowing RNRS top-level program prints its command-line arguments, as with the
script above.

#! /usr/bin/scheme --program

March 2010 Cadence Research Systems 5

SCHEME(1) SCHEME(1)

(import (rnrs))
(for-each
(lambda (x) (display x) (newline))
(cdr (command-line)))

“scheme-script” may be used in place of “scheme --program”, possibly prefixed by “/usr/bin/env” as sug-
gested in the nonnormative R6RS appendix on running top-level programs as scripts, i.e., the first line of
the top-level program may be replaced with the following.

#! /usr/bin/env { InstallSchemeScriptName}

If a top-level program depends on libraries other than those built intoChez Scheme, the “--libdirs” option
can be used to specify which source and object directories to search.Similarly, if a library upon which a
top-level program depends has an extension other than one of the standard extensions, the “--libexts” option
can be used to specify additional extensions to search.

These options set the correspondingChez Schemeparameters library-directories and library-extensions.
The values of both parameters are lists of pairs of strings.The first string in each library-directories pair
identifies a source-file root directory, and the second identifies the corresponding object-file root directory.
Similarly, the first string in each library-extensions pair identifies a source-file extension, and the second
identifies the corresponding object-file extension. Thefull path of a library source or object file consists of
the source or object root followed by the components of the library name prefixed by slashes, with the
library extension added on the end.For example, for root /usr/lib/scheme, library name (app lib1), and
extension .sls, the full path is /usr/lib/scheme/app/lib1.sls.

The format of the arguments to “--libdirs” and “--libexts” is the same: a sequence of substrings separated
by a single separator character. The separator character is a colon (:), except under Windows where it is a
semi-colon (;). Between single separators, the source and object strings, if both are specified, are separated
by two separator characters.If a single separator character appears at the end of the string, the specified
pairs are added to the existing list; otherwise, the specified pairs replace the existing list. The parameters
are set after all boot files have been loaded.

If multiple “--libdirs” options appear, all but the final one are ignored, and if If multiple “--libexts” options
appear, all but the final are ignored.If no “--libdirs” option appears and the CHEZSCHEMELIBDIRS
environment variable is set, the string value of CHEZSCHEMELIBDIRS is treated as if it were specified by
a “--libdirs” option. Similarly, if no “--libexts” option appears and the CHEZSCHEMELIBEXTS environ-
ment variable is set, the string value of CHEZSCHEMELIBEXTS is treated as if it were specified by a
“--libexts” option.

The library-directories and library-extensions parameters set by these options are consulted by the expander
when it encounters an import for a library that has not previously been defined or loaded. The expander
first constructs a partial name from the list of components in the library name, e.g., “a/b” for library (a b).
It then searches for the partial name in each pair of root directories, in order, trying each of the source
extensions then each of the object extensions in turn before moving onto the next pair of root directories.If
the partial name is an absolute pathname, e.g., “˜/.myappinit” for a library named (˜/.myappinit), only the
specified absolute path is searched, first with each source extension, then with each object extension. Ifthe
expander finds a source file before it finds an object file, it loads the corresponding object file if the object
file exists and is not older than the source file.If this is not the case, and the parameter compile-imported-
libraries is set to #t, the expander compiles the library via compile-library. Otherwise, the expander loads
the source file. An exception is raised during this process if a source or object file exists but is not readable
or if an object file cannot be created.

The search process used by the expander when processing an import for a library that has not yet been
loaded can be monitored by setting the parameter import-notify to #t. This parameter can be set from the
command line via the “--import-notify” command-line option.

OPTIMIZE LEVELS
The “--optimize-level” option sets the initial value of theChez Schemeoptimize-level parameter to 0, 1, 2,
or 3. The value is 0 by default.

March 2010 Cadence Research Systems 6

SCHEME(1) SCHEME(1)

At optimize-levels 0, 1, and 2, code generated by the compiler issafe, i.e., generates full type and bounds
checks. Atoptimize-level 3, code generated by the compiler isunsafe, i.e., may omit these checks.Unsafe
code is usually faster, but optimize-level 3 should be used only for well-tested code since the absense of
type and bounds checks may result in invalid memory references, corruption of the Scheme heap (which
may cause seemingly unrelated problems later), system crashes, or other undesirable behaviors.

At optimize levels 2 and 3, the system also assumes that the names of built-in procedures have their original
values, even if assigned, in an interaction environment whose semantics have been reverted by the revert-
interaction-semantics procedure or because the “--revert-interaction-semantics” command-line option has
been supplied. This aspect of the optimize level is irrelevant for code appearing within a library or RNRS
top-level program or bindings imported from a module or library.

COMPILING FILES
Chez Schemecompiles source expressions as it sees them.In order to speed loading of a large file, the file
may be compiled with the output placed in an object file. (compile-file “foo”) compiles the expressions in
the file “foo.ss” and places the resulting object code on the file “foo.so”. Loading a pre-compiled file is no
different from loading the source file, except that loading is faster since compilation is already done.

To compile a program to be run with --program, use compile-program instead of compile-file.compile-
program preserves the first line unchanged, if it begins with #! followed by a forward slash or space.Also,
while compile-file compresses the resulting object file, compile-program does not do so if the #! line is
present, so it can be recognized by the shell’s script executor. Any libraries upon which the top-level pro-
gram depends, other than built-in libraries, must be compiled first via compile-file or compile-library. This
can be done manually or by setting the parameter compile-imported-libraries to #t before compiling the
program.

To compile a script to be run with --script, use compile-script instead of compile-file.compile-script is like
compile-program, but, like compile-file, implements the interactive top-level semantics rather than the
RNRS top-level program semantics.

BOOT and HEAP FILES
When Chez Schemeis run, it looks for one or more boot files to load. Boot files contain the compiled
Scheme code that implements most of the Scheme system, including the interpreter, compiler, and most
libraries. Bootfiles may be specified explicitly on the command line via “-b” options or implicitly. In the
simplest case, no “-b” options are given and the necessary boot files are loaded automatically based on the
name of the executable. For example, if the executable name is “myapp”, the system looks for
“myapp.boot” in a set of standard directories. It also looks for and loads any subordinate boot files required
by “myapp.boot”. Subordinate boot files are also loaded automatically for the first boot file explicitly spec-
ified via the command line. When multiple boot files are specified via the command line and boot each file
must be listed before those that depend upon it.

The “--verbose” option may be used to trace the boot file searching process and must appear before any
boot arguments for which search tracing is desired.

Ordinarily, the search for boot files is limited to a set of default installation directories, but this may be
overridden by setting the environment variable SCHEMEHEAPDIRS. SCHEMEHEAPDIRS should be a
colon-separated list of directories, listed in the order in which they should be searched.Within each direc-
tory, the two-character escape sequence “%v” is replaced by the current version, and the two-character
escape sequence “%m” is replaced by the machine type.A percent followed by any other character is
replaced by the second character; in particular, “%%” is replaced by “%”, and “%:” is replaced by “:”.If
SCHEMEHEAPDIRS ends in a non-escaped colon, the default directories are searched after those in
SCHEMEHEAPDIRS; otherwise, only those listed in SCHEMEHEAPDIRS are searched. Under Win-
dows, semi-colons are used in place of colons.

Boot files consist of a header followed by ordinary compiled code and may be created with make-boot-file.
For example,

(make-boot-file "myapp.boot" ’("petite")
"myapp1.so" "myapp2.so")

March 2010 Cadence Research Systems 7

SCHEME(1) SCHEME(1)

creates a boot file containing the code from myapp1.so and myapp2.so with a header identifying petite.boot
as a boot file upon which the new boot file depends.Source files can be provided as well and are compiled
on-the-fly by make-boot-header.

Multiple alternatives for the boot file upon which the new boot file depends can be listed, e.g.:

(make-boot-file "myapp.boot" ’("petite" "scheme")
"myapp1.so" "myapp2.so")

When possible, both “scheme“ and “petite“ should be specified when creating a boot file for an application,
as shown above, so that the application can run in eitherPetite Chez Schemeor Chez Scheme. If the appli-
cation requires the use of the compiler, just “scheme“ should be specified.

If the new boot file is to be a base boot file, i.e., one that does not depend on another boot file, petite.boot
(or some other boot file created from petite.boot) should be listed first among the input files.

(make-boot-file "myapp.boot" ’() "petite.boot"
"myapp1.so" "myapp2.so")

DOCUMENTATION
Complete documentation forChez Schemeis available in two parts:The Scheme Programming Language,
4th Edition, and The Chez Scheme Version 8 User’s Guide. Both documents are available electronically at
www.scheme.comas well as in printed form.

Several example Scheme programs, ranging from a simple factorial procedure to a somewhat complex uni-
fication algorithm, are in the examples directory (see FILES below). Looking at and trying out example
programs is a good way to start learning Scheme.

ENVIRONMENT
The environment variableSCHEMEHEAPDIRS (see above) may be set to a colon-separated (semi-colon
under Windows) list of directories in which to search for boot files.

FILES
/usr/bin/scheme executable file
/usr/bin/petite executable file
/usr/bin/{InstallSchemeScriptName}executable file
/usr/lib/csv8.0/lib example program library
/usr/lib/csv8.0/i3le bootand include files

SEE ALSO
R. Kent Dybvig, The Scheme Programming Language, 4th Edition, MIT Press (2009),

http://www.scheme.com/tspl4/.
R. Kent Dybvig, Chez Scheme Version 8 User’s Guide, Cadence Research Systems (2010),

http://www.scheme.com/csug8/.
Michael Sperber, R. Kent Dybvig, Matthew Flatt, and Anton van Straaten, eds., “Revised6 Report on the

Algorithmic Language Scheme,” (2007), http://www.r6rs.org/.
Daniel P. Friedman and Matthias Felleisen,The Little Schemer, fourth edition, MIT Press (1996).
Harold Abelson and Gerald J. Sussman with Julie Sussman,Structure and Interpretation ofComputer Pro-

grams, Second Edition, MIT press (1996).

AUTHOR
Cadence Research Systems,http://www.scheme.com

March 2010 Cadence Research Systems 8

