
Chez Scheme Version 6 Release Notes
Copyright c© 1998 Cadence Research Systems
All Rights Reserved
October 1998

Overview

This document outlines the changes made to Chez Scheme for Version 6 since Version 5.

Version 6 is available for the following platforms:
• DEC Alpha AXP Digital Unix 3.X, 4.X
• HP PA-RISC HPUX 10.x
• Intel 80x86 Linux 2.0.X
• Intel 80x86 Windows 95/NT
• Motorola PowerPC AIX 4.X
• Sun Sparc Solaris 2.X
• Silicon Graphics IRIX 6.X

This document contains three sections describing significant (1) major functionality changes, (2) performance
enhancements, and (3) bugs fixed. A version number listed in parentheses in the header for a change indicates
the first minor release or prerelease to support the change.

1. Major Functionality Changes Since Version 5

1.1. Petite Chez Scheme

A freely distributable version of Chez Scheme, Petite Chez Scheme, is included with Chez Scheme Version
6. Petite Chez Scheme may be used as a run-time environment for compiled Chez Scheme applications or
as a stand-alone Scheme system. With the exception that the compiler is not present, Petite Chez Scheme
is fully compatible with Chez Scheme. The interpreter, normally available via the interpret procedure,
replaces the compiler as the default evaluator.

Lacking the compiler limits Petite Chez Scheme in a few specific ways. Most importantly, interpreted
code is generally not nearly as fast as compiled code, so source code loaded into Petite Chez Scheme is
not as fast as in Chez Scheme. Compiled code loaded into Petite Chez Scheme runs at the same speed as
in Chez Scheme, however, unless it explicitly invokes the evaluator. foreign-procedure expressions must
be compiled, so Petite Chez Scheme cannot process these expressions. Compiled foreign-procedure forms
loaded into Petite Chez Scheme pose no difficulty, however. Finally, inspector information is not generated
for interpreted code, so the inspector is not as useful in Petite Chez Scheme as it is in Chez Scheme.

Applications developed using Chez Scheme may be distributed in source or object code form along with
Petite Chez Scheme, which serves as the run-time environment for the application. Applications that require
the compiler cannot be distributed without special licensing arrangements. It is often useful to distribute an
installation script along with an application that produces a heap file on the local machine and to redefine
the parameter scheme-start to start the application automatically. See the Chez Scheme User’s Guide for
details.

1.2. New Chez Scheme User’s Guide

Complete documentation for all features specific to Chez Scheme Version 6 can be found in the new Chez
Scheme User’s Guide. This book complements The Scheme Programming Language, second edition, which
documents ANSI/IEEE Scheme and extensions described in the Revised4 and Revised5 Reports on Scheme.

Chez Scheme Version 6 Release Notes Page 1



1.3. Online Documentation

The Chez Scheme User’s Guide and The Scheme Programming Language, second edition are now distributed
electronically with Chez Scheme as html documents. The Chez Scheme User’s Guide includes a unified index
and a unified summary of forms that contain entries for both documents, effectively linking the two documents
into a single document that covers the entire language supported by Chez Scheme. The online index and
summary of forms also contain page numbers for the printed versions of the books and can thus be used
as searchable indexes for the printed versions. The documentation is also available via a link on the Chez
Scheme web site, www.scheme.com.

1.4. Support for Intel Windows NT and Windows 95 (5.9a, 5.9i, 6.0)

Support for Intel-based systems running Windows NT and Windows 95 has been added. Chez Scheme runs
under Windows as a console-mode application, i.e., no direct windowing support is provided. Because access
to C library routines is supported via the foreign procedure interface, however, it is possible to interact
with windowing code written in other languages, including the Windows API. The Scheme Widget Library
(SWL) windowing system, distributed by Indiana University and included with Chez Scheme as a contributed
program, is one such example, linking Chez Scheme to the Tcl/Tk graphics and windowing toolkit. Dynamic
loading of dynamic link libraries (DLL) is supported via load-shared-object.

Under Windows NT, keyboard interrupts work as follows. When used to interrupt a running computa-
tion, a single keyboard interrupt (initiated with Control-C or Control-Break) causes the keyboard interrupt
handler to be invoked. The default keyboard interrupt handler enters the debugger. A second keyboard
interrupt may be used if the system does not respond and will terminate the Scheme process. A keyboard
interrupt may be initiated to cancel input from the console, which by default causes a reset to the current
café.

Under Windows 95, keyboard interrupts work similarly, except that when using a keyboard interrupt
to cancel input, it is necessary to press the enter key after the interrupt key. A second keyboard interrupt
will terminate the Scheme process.

No other signal support is provided under Windows; in particular, register-signal-handler is unsup-
ported.

As of Version 6.0, the process implementation is more robust. As of Version 5.9i, the virtual memory
limit has been increased from the original miserly 32MB limit to a maximum of 512MB depending upon
operating system constraints such as available physical memory and swap space. Also as of Version 5.9i,
the cpu-time primitive is now more accurate under Windows NT; under Windows 95 cpu-time returns
elapsed real (clock) time, i.e., the same value as real-time. The Windows version presently lacks support
for char-ready?, which always returns #f.

1.5. Datum Comments

The reader now allows an entire datum to be commented out with a single #; prefix, without regard to line
boundaries. For example, the expression

(let ()

(define foo

(lambda (x #;y z) ; no more y

#;(pretty-print y)

(+ x z)))

#;(define bar

(lambda (x)

#;(pretty-print x) x)) ; look ma, nested #;

(let ([a (foo 3 #;4 5)]

#;[b (foo 6 7 8)]) ; no more b
(+ (* a a) #;(* b b))))

is equivalent to

Chez Scheme Version 6 Release Notes Page 2



(let ()
(define foo

(lambda (x z)
(+ x z)))

(let ([a (foo 3 5)])
(+ (* a a))))

and evaluates to 64. This mechanism is probably most useful for commenting out local definitions, as with
the definition of bar in the example above.

1.6. R5RS eval

The procedure eval now accepts an optional env-spec argument. This argument may be one of four val-
ues: the value returned by interaction-environment, which provides access to the identifier bindings in
the normal top-level environment, the value returned by scheme-report-environment (when applied to 5),
which provides read-only access to the required and optional identifier bindings described in the Revised5

Report, the value returned by null-environment (when applied to 5), which provides read-only access to
the required and optional keyword bindings described in the Revised5 Report, and the value returned by
ieee-environment, which provides read-only access to the identifier bindings described in ANSI/IEEE Stan-
dard for Scheme. env-spec defaults to the value returned by interaction-environment.

Two-argument eval is required by the Revised5 Report on Scheme, as are interaction-environment,
scheme-report-environment, and null-environment. One-argument eval and ieee-environment are Chez
Scheme extensions. compile, interpret, expand, and sc-expand now accept the optional env-spec argument
and support the same values for env-spec as eval. eps-expand also accepts an optional env-spec argument,
although it supports only the value returned by interaction-environment.

With the addition of the env-spec argument to eval, Chez Scheme now supports all required and optional
features of the Revised5 Report on Scheme.

With this change to eval, the old ieee and r4rs subset modes are no longer necessary and have been
removed. The subset-mode parameter may now be set only to system, which is used primarily in patch files,
and #f, which is the default (user) mode.

1.7. Source-file information

Source-file information is now associated with compiled code loaded either from a source file or from a
compiled file. This allows the compiler to produce better error messages for syntax errors detected by the
reader, expander, or compiler, and it allows the inspector to open for listing the file that contains a particular
procedure or procedure call found in an inspected continuation. The source-directories parameter may be
set to define a search path for source files. Because the system records the length and a checksum with each
source file descriptor, the system bypasses source files that have the same name as the original file but do not
have the same contents. (This includes files that have been modified since they were loaded or compiled.)

1.8. Modules

Chez Scheme Version 6 supports three new definition forms used to define modules and import bindings
from them: module, import, and import-only. These forms may appear wherever any other definition may
appear, including at top level, within a lambda, let, let*, or letrec body, or within another module form.
Modules may be named or anonymous. A named module encapsulates a set of bindings, some of which
may be explicitly exported from the module. None of the bindings are not automatically visible where the
module form appears, but may be made visible anywhere within the scope of the module name via import
or import-only. An anonymous modules behaves like a named module, except that the exports are made
visible immediately where the module form appears, as with an implicit import form.

Modules may be separately compiled; a compiled file containing a module form may be loaded or visited
via load or visit. load loads the module and executes its initialization code; visit simply makes the
module’s interface visible to allow compilation of code that imports from the module.

Four modules are predefined by the system: \#system, scheme, ieee, r5rs, and r5rs-syntax.

Chez Scheme Version 6 Release Notes Page 3



A new literal-identifier=? predicate has been added and should be used to compare literal identifiers
such as else in cond in place of free-identifier=?. literal-identifier=? treats two identifiers the same
even if they are bound in different top-level modules. free-identifier=? must distinguish such identifiers,
which is not usually desirable when the identifiers are being treated as literals.

See the Chez Scheme User’s Guide for details on module and import forms, visiting files, built-in
modules, and literal-identifier=?.

1.9. Introduced bindings are now hidden at top level

Top-level definitions of identifiers introduced into the output of a macro are now visible only to other code
produced by the macro. This brings the top-level treatment of introduced bindings in line with the treatment
of local bindings. For example, if a use of the counter form defined below appears either at top level or
within a local scope, local will not be visible except within the code for the introduced definition of x.

(define-syntax counter
(syntax-rules ()

[(_ x)
(begin

(define local 0)
(define x
(lambda ()

(set! local (+ local 1))
local)))]))

1.10. Support for edge-count profiling

Support for edge-count profiling has been added to the compiler. When the parameter compile-profile is
set to true, the compiler instruments the code it generates to perform low-level counting of basic blocks,
thereby computing accurate measures of how often each part of the compiled program is executed. This
information may be displayed in terms of the original source code by means of a graphical user interface
provided with the Scheme Widget Library (SWL) or via a stand-alone profile-viewing program.

1.11. Uninterned symbols may now have property lists

1.12. Changes to file-position

file-position now returns the most negative fixnum when the position cannot be determined. Existing
generic ports should be updated to follow this protocol. file-position now fully supports strings ports.

1.13. Identifier macros (5.0b, 6.0)

The syntax-case macro system has been extended to permit the definition of identifier macros. If a syntactic
keyword is found during expansion in a form context other than one in which it is the first element of a
structured form, the associated transformer receives just the keyword itself as input. It can detect this
situation via the identifier? predicate and expand the identifier itself into an arbitrary expression. For
example, the definition for v0 below expands references to v0 into references to the first element of vector v,
whether v0 appears as the first element of a structured form or not:

> (let ([v (vector (lambda (x) (+ x 1)))])
(define-syntax v0

(lambda (x)
(syntax-case x ()
[_ (identifier? x) (syntax (vector-ref v 0))]
[(_ e ...) (syntax ((vector-ref v 0) e ...))])))

(cons (v0 1) (map v0 ’(2 3 4))))

Chez Scheme Version 6 Release Notes Page 4



(2 3 4 5)

Whenever an identifier should expand the same whether it is the first element of a structured form or
not, as above, the shorthand syntactic form identifier-syntax may be used. For example, the expression
above can be rewritten as:

> (let ([v (vector (lambda (x) (+ x 1)))])

(define-syntax v0

(identifier-syntax (vector-ref v 0)))

(cons (v0 1) (map v0 ’(2 3 4))))

(2 3 4 5)

Identifier macros are useful for such purposes as expanding instance variable references into structure
accesses in the implementation of object-oriented programming systems and for supporting noncall-position
references to macros serving as integrable procedures.

As of Version 6.0, identifier macros may be used to redefine the semantics of assignments as well
as references to identifiers. This change required an extension of the syntax of the identifier-syntax

expression, although the older syntax is still supported. The new syntax separates the treatment of references
and assignments into two separate clauses. For example,

(let ([x (list 0)])

(define-syntax a

(identifier-syntax

[id (car x)]

[(set! id e) (set-car! x e)]))

(let ([before a])

(set! a 1)

(list before a x)))

evaluates to (0 1 (1)). In this example, the identifier-syntax expression creates a transformer that
converts references to a into calls to car on x and assignments to a into calls to set-car! on x.

See the Chez Scheme User’s Guide for details on both forms of identifier-syntax.

1.14. Improved inspector support for pairs and symbols

The inspector prints pairs with non-list cdrs more intuitively and no longer suppresses the the last cdr of an
improper list. It also supports value (v), property-list (pl), and name (n) messages as equivalent to the
r1, r2, and r3 messages previously supported for inspecting these fields.

1.15. compile-port

A new primitive, compile-port, has been added. compile-port is like compile-file, except that it compiles
code read from a specified input port to a specified output port, rather than from a specified file into
another file. Both port arguments are required, with the input port first and the output port second. Like
compile-file, compile-port takes an optional machine-type argument as its third parameter.

1.16. Support for record datatypes (5.9i)

Support for record datatypes has been added. Records datatypes should most often be created via the new
syntactic form define-record. A “point” record with two fields, x and y, may be defined as follows:

> (define-record point (x y))

This definition results in the definition of several procedures: a constructor named make-point, a predicate
named point?, two accessors named point-x and point-y, and two setters named set-point-x! and and
set-point-y!.

Chez Scheme Version 6 Release Notes Page 5



> (define p (make-point 3 2))
> (point? p)
#t
> (vector? p)
#f
> (point-x p)
3
> (set-point-x! p 4)
> (point-x p)
4

The resulting datatype is distinct from all other datatypes. This is in contrast to structures defined with
define-structure, which are represented as vectors.

The record datatype facility is described in the Chez Scheme User’s Guide, including a procedural
interface, facilities for reading, printing, and inspecting records, and mechanisms for declaring field types
and mutability of fields.

1.17. Process now “dups” stdout to stderr (5.9i)

The process primitive now redirects stderr to the stdout for child processes it creates. Stderr had been
undefined.

1.18. Creating ports from open file descriptors (5.9i)

When the handler argument to make-input-port, make-output-port, and make-input/output-port is a
nonnegative fixnum, the resulting port is given the default handler, and the fixnum, which is assumed to be
a valid open file descriptor, is recorded within the port for use by subsequent I/O operations. In the case of
make-input/output-port, the same file descriptor must be usable for both reading and writing; there is no
provision for separate file descriptors.

1.19. Example socket code (5.9i)

A new example program, socket.ss, has been included with the Chez Scheme distribution. This program
demonstrates the use of the foreign interface and generic ports to create a convenient interface for commu-
nicating with other processes via sockets.

1.20. trace-output-port parameter (5.9i)

A new parameter, trace-output-port, has been added. Output produced by traced procedures (established
by trace, trace-lambda, trace-let, etc.) is sent to the value of this parameter, which must be an output
port. (An undocumented parameter, trace-output, that performed the same function has been eliminated.)

1.21. Eval argument to transcript-cafe (5.9i)

The procedure transcript-cafe now accepts an optional eval argument analogous to the optional eval
argument to new-cafe.

1.22. Persistent cafe reset and exit handlers (5.9i)

new-cafe now sets up reset and exit handlers in such a way that changes to the parameters reset-handler
and exit-handler persist across resets within the cafe.

1.23. Support for the MIPS n32 ABI under IRIX (5.9g)

Support for the n32 ABI under IRIX as a new Chez Scheme machine type (“n32sgi”) has been added.
Support for the older (o32) ABI is still available as “xgi”, but may be phased out in later releases. Since
the operating system does not permit code from the two ABIs to be intermixed, Scheme object code created
for one machine type cannot be used in the other, and any C object code linked with Chez Scheme or

Chez Scheme Version 6 Release Notes Page 6



loaded dynamically via load-shared-object must be compiled with the -o32 (default) or -n32 option, as
appropriate.

1.24. Support for C manipulation of Scheme objects (5.9d)

A variety of C preprocessor macros and external entry points have been added to allow C programs to
examine, allocate, and alter Scheme objects. They also permit C programs to call Scheme procedures (see
the next item). C code that uses these features must include the "scheme.h" header file distributed with
Chez Scheme and be linked with the Chez Scheme executable. These features are documented in the Chez
Scheme User’s Guide.

1.25. Support for C calls into Scheme (5.9d)

Support for calling Scheme procedures from C has been added. C code may now call Scheme procedures of
zero through three arguments via the Scall0, Scall1, Scall2, and Scall3 routines in the "scheme.h" header
file mentioned above. A more general interface for longer argument lists is also provided. Continuations may
be used to perform nonlocal exits beyond pending C calls as well as pending Scheme calls. These features
are documented in the Chez Scheme User’s Guide.

The example file "foreign.ss" distributed with Version 6 contains prototype code, with examples,
for converting “foreign-callable” declarations into C interface routines to support C calls to Scheme proce-
dures with automatic datatype conversion analogous to that provided for Scheme calls to C procedures via
foreign-procedure.

1.26. Support for locking objects (5.9d)

Objects may now be locked to prevent the storage manager from reclaiming or relocating the objects. Objects
are locked via the Scheme procedure lock-object, which is also available to C code using the C interface
described above as Slock object. unlock-object or Sunlock object (from C) may be used to unlock the
object, allowing it to be reclaimed or relocated.

1.27. Range checks for foreign return values (5.9d)

Range checks for foreign procedures returning fixnum or char values have been eliminated. These checks
added both code and time overhead and were of questionable utility. The upper 24 bits of char return values
are now ignored. Returning a number outside of the fixnum range from C with a fixnum result type produces
an unspecified value.

1.28. New primitive for obtaining environment settings (5.9c)

The new primitive getenv accepts a single string argument and returns the operating system shell’s environ-
ment value associated with the argument, or #f if no environment value is associated with the argument.

1.29. Support for box syntax in syntax-case expander (5.9c)

The syntax-case expander sc-expand now supports the box syntax in syntax-case and syntax-rules pat-
terns and templates and within quasiquote forms. For example, ‘#&(,(+ 3 4)) now evaluates to #&(7).

1.30. Support for PowerPC AIX 4.X (5.9a)

Support for PowerPC-based systems running AIX 4.X has been added. Dynamic loading of foreign (C)
object code is supported via load-shared-object. Because load-shared-object is implemented via the C
library load() function, object code loaded dynamically must follow the requirements set forth for programs
loaded via load().

Libraries such as the C library cannot be loaded directly via load-shared-object under AIX. It is pos-
sible to make library entries visible to Scheme, however, by registering them explicitly via register symbol,
e.g.:

register symbol("strcmp", (int)strcmp);
In order for register symbol to be made visible to a program loaded into Chez Scheme, register symbol
must be included in the import file given to the linker when the program is linked.

Chez Scheme Version 6 Release Notes Page 7



1.31. Compatibility features removed from base system (5.9a)

Various library procedures and syntactic forms supported by Version 5 for compatibility with older versions
of Chez Scheme and with other Scheme and Lisp systems have been removed from the base system. Most
are available as user-level definitions in the the file "examples/compat.ss" in the release directory. The
procedures support-sicp and support-first-class-environments have been dropped, since they were in-
cluded only to support the now obsolete first edition of Abelson and Sussman’s Structure and Interpretation
of Computer Programs.

1.32. *scheme* is now a parameter, scheme-start (5.0d)

The variable *scheme* has been converted into the parameter scheme-start. The procedure value of this
parameter is applied on system start-up from a saved heap to a list of the file names from the command line.
Defining or assigning *scheme* no longer has any effect on system start-up.

1.33. New command-line options (5.0d)

Support for two new command-line options, -c and --, has been added.
Normally, the heap is compacted whenever a heap file is saved. This can consume significant time and

additional memory for very large heaps. The -c option can be used to disable this compaction. Multiple -c

options toggle heap compaction; it is thus possible to use a shell script that disables compaction by default
while still allowing compaction if desired. The -c option has no effect if the -s option has not been specified.

The -- option forces all remaining arguments on the command line to lose any special significance. By
default, all remaining arguments are treated as file names. This feature may be used in connection with the
scheme-start parameter to allow applications to give arbitrary interpretation to command line arguments
that follow the initial --.

1.34. New reader syntax for syntax (5.0d)

Just as (quote obj) may be abbreviated ’obj, (syntax template) may now be abbreviated #’template,

1.35. fluid-let-syntax (5.0d)

Support for fluid-let-syntax has been added. This feature is described in the second edition of The Scheme
Programming Language.

1.36. extend-syntax with the syntax-case expander (5.0d)

extend-syntax is now supported by sc-expand. In Version 5, extend-syntax was supported only by
eps-expand. This allows both lexical (syntax-rules and syntax-case) syntactic extensions to coexist with
extend-syntax, but the interaction between the two is not entirely reliable. In general, it is best to use only
one or the other kind of syntactic extension in a single application. This feature should be used only as an
aide in migrating applications from extend-syntax to syntax-case/syntax-rules, and will not necessarily
be directly supported in future releases.

1.37. Support for Linux ELF (5.0d)

Support for Intel-based Linux ELF systems has been added. Dynamic loading of foreign (C) object code is
supported on Linux ELF systems via load-shared-object.

1.38. One-shot continuations (5.0d)

Support for one-shot continuations has been added. A one-shot continuation is like a normal (multi-shot)
continuation, except that it can be invoked at most once, implicitly or explicitly. One-shot continuations may
be more efficient than multi-shot continuations when one-shot continuations suffice. One-shot continuations
are obtained via call/1cc, just as as multi-shot continuations are obtained via call/cc.

Chez Scheme Version 6 Release Notes Page 8



1.39. Signal handling (5.0c)

A mechanism for handling low-level signals has been added. The new primitive register-signal-handler is
used to establish a signal handler for a given signal. It expects two arguments: an integer signal number and
a procedure of one argument. See your host system’s <signal.h> or documentation for a list of signals and
their numbers. After a signal handler for a given signal has been registered, the handler is called whenever
the signal is delivered to the process. The handler should accept one argument: it will be passed the signal
number. This allows the same handler to be used for different signals and to be able to differentiate among
them.

It is generally not a good idea to establish handlers for memory faults, illegal instructions, and the like,
since the code that causes the fault or illegal instruction will continue to execute (presumably erroneously)
for some time before the signal is delivered to the Scheme handler.

1.40. Support for HP PA-RISC 700 Series under HPUX A.09.05 (5.0c)

Support for HP PA-RISC 700 Series systems under HPUX A.09.05 has been added. Saved heaps are not
currently memory mapped on this platform due to difficulties in making this work under HPUX. Memory
mapping improves startup time and memory utilization. Functionality is not affected. Dynamic loading of
foreign (C) object code is supported via load-shared-object.

1.41. New broken-weak-pointer object (5.0b)

A new “broken-weak-pointer object”, #!bwp, has been added. In Version 5, when an object to which the car
of a weak pair points is collected, the car of the weak pair is set to #f. In Version 6, the car is set to #!bwp.
The new predicate bwp-object? should be used to determine whether an object is the broken-weak-pointer
object; it returns true only for #!bwp.

> (define x (weak-cons (string #\h #\i) ’()))
> x
("hi")
> (collect)
> x
(#!bwp)
> (bwp-object? (car x))
#t

Code that uses weak pairs must be altered to reflect this change.

1.42. Change to let-syntax and letrec-syntax (5.0b)

In Version 5, let-syntax and letrec-syntax behave similarly to let in that the forms in the body of a
let-syntax or letrec-syntax form are treated as a lambda body, forming a new lexical contour. let-syntax
and letrec-syntax forms now behave more like begin forms, so that they can expand into one or more
definitions when they appear in contexts where definitions are allowed.

1.43. Inspector eval message (5.0b)

Procedure and continuation objects now accept an eval message. If x is bound to a procedure or continuation
object, (x ’eval ’expr) evaluates expr with bindings for the free or frame variables bound as for the eval
command to the interactive inspector.

1.44. trace-print parameter (5.0b)

A new parameter, trace-print, has been added. The value of (trace-print) is used by the trace package
to print both inputs to and outputs from procedures. Its default value is pretty-print. The value of this
parameter should be a procedure that accepts two arguments, the object to print and a port to which the
object should be printed.

Chez Scheme Version 6 Release Notes Page 9



1.45. Character name syntax (5.0b)

A new mechanism has been established for extending or changing the set of character names recognized by
the reader and printer. The procedure char-name is used to associate symbolic names with characters and
to look up names associated with characters or characters associated with names.

char-name accepts either one or two arguments. When passed one argument, either a symbol or a
character, char-name returns the associated item. For example, with the default set of character names,
(char-name #\space) returns space and (char-name ’space) returns #\space. If no association as been
made for a symbol or character, char-name returns #f, so for example, (char-name #\a) and (char-name

’foo) initially return #f.
When passed two arguments, the first must be a symbol s whose name consists of two or more alphabetic

characters. The second must be a character or #f. If the second argument is a character c, the name s is
associated with the character c. Any other association for s is dropped, while other associations for c
are retained. Thus, a name can map to only one character, but more than one name can map to the
same character. If the second argument to char-name is #f, any association for s is dropped, and no new
association is established.

The reader (read) and printer (write and pretty-print) use char-name to look up characters associated
with names and names associated with characters.

When passed one character argument c, char-name returns the name associated with c for which the
association was most recently established.

> (char-name ’etx)

#f

> (char-name ’etx #\003)

> (char-name ’etx)

#\etx

> (char-name #\003)

etx

> #\etx

#\etx

> (eq? #\etx #\003)

#t

> (char-name ’etx #\space)

> (char-name #\003)

#f

> (char-name ’etx)

#\etx

> #\space

#\etx

> (char-name ’etx #f)

> #\etx

Error in read: invalid character name #\etx.

> #\space

#\space

1.46. Support for new Sparc systems (5.0a)

Support has been added for Sparc systems with separate instruction and data caches, including the Sparc-5.
Prior releases of Chez Scheme on these systems exhibit sporadic instruction faults and other bugs due to a
lack of synchronization between the instruction and data caches.

Chez Scheme Version 6 Release Notes Page 10



2. Performance Enhancements Since Version 5

2.1. Improved interpreter performance (5.9i)

By default, code loaded from a file or entered into the read-eval-print loop is compiled directly to machine
code by Chez Scheme’s incremental compiler. An interpreter has long been available as an alternative to
the incremental compiler, although its existence has not been well publicized. It is the default evaluator in
Petite Chez Scheme, and may be used in Chez Scheme by invoking interpret on an expression, by setting
current-eval to interpret, or by passing interpret as the second argument to load. The interpreter is
now considerably faster and allocates less intermediate storage than the old interpreter. In addition, the
source optimizations described elsewhere in these notes are performed prior to interpretation as well as by
the compiler.

2.2. Improved memory compaction for code objects (5.9i)

Code objects are now packed more efficiently whenever a heap is saved, which decreases heap size and
increases instruction cache locality. For some programs, this results in a substantial (5% or more) increase
in performance.

2.3. Improved letrec optimization (5.9i)

The compiler now handles letrec expressions with let or letrec expressions nested within the “right-
hand side” expressions more efficiently. For programs that make heavy use of letrec expressions nested in
this fashion, this optimization can make a sizable difference in program performance, as it facilitates both
procedure inlining and optimization of direct calls between procedures.

2.4. Procedure inlining (5.9a, 5.9i)

The compiler now performs aggressive inlining of procedures along with various other source optimizations,
using a strategy that rarely causes much code expansion. The performance increase varies from program
to program, but generally seems to be around 8–10% on average, with much more impressive speed-ups
for some programs. Inlining may be controlled via a set of new compiler parameters; see the Chez Scheme
User’s Guide for details.

2.5. Faster continuations (5.0d)

Changes have been made in the continuation handling code that make both obtaining and invoking contin-
uations. Performance gains for highly continuation-intensive code can measure as much as 50%, although
gains for typical programs are more modest.

3. Bugs Fixed Since Version 5

3.1. Float printing (5.9i)

The floating-point printing algorithm now takes into account the input rounding algorithm to avoid printing
more digits than necessary. This change brings the printer up-to-date with the floating-point printing
algorithm described in “Printing floating-point numbers quickly and accurately” by Robert G. Burger and
R. Kent Dybvig, which was presented at the SIGPLAN PLDI conference in 1996.

3.2. Ambiguous printing of symbol names starting with @ (5.9i)

The printer now escapes symbol names that start with @ to avoid an ambiguity that can arise if the symbol
is preceded in the output by a comma produced as a result of printing an unquote form. Prior to this change,
(unquote @x) and (unquote-splicing x) would both print as ,@x.

Chez Scheme Version 6 Release Notes Page 11



3.3. Incorrect ceiling behavior (5.9i)

A bug in ceiling when invoked on real numbers represented as inexact complexnums, e.g., 3.2+0.0i, has
been fixed. The bug resulted in ceiling computing the floor of its input instead.

3.4. Storage management bug (5.9g)

A bug that sometimes resulted in invalid memory references for programs that allocate large quantities of
medium- to large-sized objects has been fixed.

3.5. Invalid memory fault (5.9d)

A bug that caused spurious (and rare) invalid memory references on Alpha processors has been fixed.

3.6. Integer division bug (5.9a)

A bug in that caused integer division operators to return 0 instead of -1 when dividing the most-negative
fixnum by its additive inverse (the least-positive bignum) has been fixed.

3.7. Signal handling fixes (5.0f and 5.0g)

A bug in signal handling whereby sigchild interrupts during a read from the console were mistaken for
keyboard interrupts has been fixed. Also, a bug that caused keyboard interrupt handling to revert to the
operating system default behavior on some systems after calls to system or process has been fixed.

3.8. Multiple return values bug (5.0d)

A bug in the interaction of the or syntactic form and multiple return values has been fixed. This bug would
result in the erroneous signaling of the error, “incorrect number of values received in multiple value context.”

3.9. Memory fault bug under NeXTSTEP (5.0d)

An bug that caused spurious memory faults under NeXTSTEP has been fixed. This bug could also sometimes
result in an EMT or illegal instruction trap.

3.10. Nested quasiquote/unquote-splicing bug (5.0b)

A bug that caused unquote-splicing forms within nested quasiquotes to be spliced improperly into the
surrounding list structure has been fixed. For example:

(let ((x 1) (y 2))
‘(foo (,x ,y) ‘(bar ,@(baz ,y))))

evaluated to:

(foo (1 2) ‘(bar (unquote-splicing baz 2)))

but now correctly evaluates to:

(foo (1 2) ‘(bar ,@(baz 2)))

3.11. Weak pair cdr mutation bug (5.0b)

A bug that sometimes caused the cdr field of a weak pair to become corrupt after restoring a saved heap has
been fixed.

3.12. End-of-file on block read from generic port (5.0b)

The procedure block-read incorrectly required that generic port handlers for block read return a nonnegative
fixnum, when in fact they should also be permitted to return the end-of-file object (#!eof). This has been
fixed.

Chez Scheme Version 6 Release Notes Page 12



3.13. Bug in string-fill! (5.0b)

A bug in string-fill! that caused it to fill beyond the end of its argument string has been fixed.

3.14. Memory fault on incorrect argument count (5.0b)

A compiler bug that resulted in a memory fault instead of a meaningful error for certain expressions has
been fixed. For example, the expression

(letrec ([a (lambda (v) v)]) ((begin ’foo a)))

resulted in an invalid memory reference, but now correctly signals an “incorrect argument count” error.

3.15. Register allocation bug (5.0a)

Some applications involving several arguments were evaluated incorrectly, resulting in one argument receiving
the value of another. For example:

(let ()
(define a (lambda (x) x))
(define b (lambda (k) (k ’b)))
(define c (lambda (k)

(b (lambda (y)
(let ([x ’c])

(k x y (a #f) (a #f)))))))
(c list))

should evaluate to (c b #f #f) but actually evaluated to (c #f #f #f). This bug has been fixed.

3.16. Error saving heaps on SGI systems under IRIX 5.2 (5.0a)

Attempts to save heap files under IRIX 5.2 failed with the error message “cannot set brk”. This was caused
by a bug in the interaction between brk and memory-mapped files under IRIX 5.2. Version 6 avoids using
brk when saving heaps so that this no longer causes a problem.

Chez Scheme Version 6 Release Notes Page 13


