
Chez Scheme Version 5 Release Notes
Copyright c© 1994 Cadence Research Systems
All Rights Reserved
October 1994

Overview

This document outlines the changes made to Chez Scheme for Version 5 since Version 4. New items include
support for syntax-case and revised report high-level lexical macros, support for multiple values, support for
guardians and weak pairs, support for generic ports, improved trace output, support for shared incremental
heaps, support for passing single floats to and returning single floats from foreign procedures, support for
passing structures to and returning structures from foreign procedures on MIPS-based computers, and various
performance enhancements, including a dramatic improvement in the time it takes to load Scheme source
and object files on DEC Ultrix MIPS-based computers.
Overall performance of generated code has increased by an average of 15–50 percent over Version 4 depending
upon optimize level and programming style. Programs that make extensive use of locally-defined procedures
will benefit more than programs that rely heavily on globally-defined procedures, and programs compiled at
higher optimize levels will improve more than programs compiled at lower optimize levels. Compile time is
approximately 25 percent faster.
Refer to the Chez Scheme System Manual, Revision 2.5 for detailed descriptions of the new or modified
procedures and syntactic forms mentioned in these notes.
Version 5 is available for the following platforms:
• Sun Sparc SunOS 4.X & Solaris 2.X
• DEC Alpha AXP OSF/1 V2.X
• Silicon Graphics IRIX 5.X
• Intel 80x86 NeXT Mach 3.2
• Motorola Delta MC88000 SVR3 & SVR4
• Decstation/Decsystem Ultrix 4.3A
• Intel 80x86 BSDI BSD/386 1.1
• Intel 80x86 Linux

This document contains four sections describing (1) functionality enhancements, (2) performance enhance-
ments, (3) bugs fixed, and (4) compatibility issues.

1. Functionality Enhancements Since Version 4

1.1. Lexical macros

Support for the syntax-case macro system, a fully general lexical syntactic extension facility that includes
the revised report high-level macro system as a subset, has been incorporated. The system provides au-
tomatic pattern-based syntax checking, input destructuring, and output restructuring, like its predecessor
extend-syntax, while respecting lexical scoping of identifiers in macro definitions and macro calls. Whereas
the pattern facilities of extend-syntax must be abandoned when writing “low-level” macros, the pattern
facilities of syntax-case are available to all macros. In fact, the system draws no distinction between high-
and low-level macros, so there is never a need to completely rewrite a macro originally written in a high-level
style simply because it needs to perform some low-level operation. The system supports a controlled form of
identifier capture that allows most common “capturing” macros to be written without violating the spirit of
lexical scoping. Local macro definitions are supported, and internal syntax definitions may be freely inter-
mixed with internal variable definitions. The more restrictive revised report syntax-rules form is provided
in addition to syntax-case, but is in fact itself a macro defined with and in terms of syntax-case.

The new macro system supports a useful expansion-time alternative to load. The syntax (include
"filename") expands into a begin expression containing the expressions found in the named file. The

Chez Scheme Version 5 Release Notes Page 1

expressions are scoped where the include form is located, allowing multiple files to be share the same local
context.

Most existing extend-syntax macros can be redefined easily using syntax-case or syntax-rules. Some
“expansion-passing style” (EPS) macros, however, are not easily expressed; specifically, those that made
use of fluid binding during macro expansion and those that made assumptions about the (undocumented)
structure of the macro expander output. Backwards compatibility for bot EPS and extend-syntax macros is
supported via the current-expand parameter, which may be set to either sc-expand, the default syntax-case
expander, or eps-expand, the EPS and extend-syntax expander. The procedure eps-expand has the same
functionality as the old expand, and the procedure eps-expand-once has the same functionality as the old
expand-once.

1.2. Multiple values

Complete and efficient support for the proposed Scheme multiple values interface has been added. The syntac-
tic forms and procedures dynamic-wind, call-with-input-file, call-with-output-file, with-output-to-file,
with-input-from-file, delay, and force have been updated to handle multiple values, as have both time
and trace. Chez Scheme “cafés” have been updated to return multiple values, and exit and the default
exit-handler now accept multiple values.

Engines have been updated in a non-upwardly compatible fashion to support multiple values: the
complete procedure passed to an engine is now passed the remaining ticks as its first argument, and the
values returned by the engine computation as its remaining arguments. In prior releases, the single value
of the engine computation was passed as the first argument, with the ticks remaining passed as the second
argument.

1.3. Support for new platforms

Support has been added for Silicon Graphics computers running IRIX Version 5.X, Sun Sparc-based comput-
ers running Solaris 2.X, Decsystem MIPS 4400-based computers running Ultrix 4.3A, Motorola MC88000-
based systems running System-V, Release 4, Intel 80x86-based systems running NeXT Mach 3.2, BSDI
BSD/386 1.1, and Linux.

Full use has been made of the memory mapping and dynamic linking capabilities of Solaris 2.X, IRIX
5.X, and SVR4. Dynamic shared libraries are used to reduce executable size, the run-time linker is used to
load foreign code, and saved heaps are shared by all processes that use them (see the note regarding saved
heaps below). Foreign code is loaded, using load-shared-object, in the form of “shared objects” rather
than simple object files. Programs that previously used provide-foreign-entries or load-foreign, which
are not supported under these operating systems, should be rewritten to use load-shared-object instead.

1.4. Guardians and weak pairs

Version 5 includes support for two new features supported by the storage management system: guardians
and weak pairs. Guardians allow programs to protect objects from deallocation by the garbage collector
and to determine when the objects would otherwise have been deallocated. Weak pairs allow programs to
maintain “weak” pointers to objects, pointers that do not save the object from deallocation but which remain
valid as long as the object is otherwise accessible in the system.

1.5. Generic ports

A new generic port facility is supported in Version 5. This facility allows the programmer to add new types
of ports with arbitrary input/output semantics. This facility may be used, for example, to define any of
the built-in Common Lisp stream types, i.e., synonym streams, broadcast streams, concatenated streams,
two-way streams, echo streams, and string streams. It may also be used to define more exotic ports, such
as ports that represent windows on a bit-mapped display or ports that represent processes connected to the
current process via pipes or sockets.

Along with support for generic ports, Version 5 includes support for bidirectional ports, i.e., ports that
are both input and output ports.

Chez Scheme Version 5 Release Notes Page 2

1.6. Saved heaps

Version 5 supports two major enhancements to the saved heap mechanism. First, support for incremental
heaps has been added. Incremental heaps contain only those portions of the heap that have changed from a
previously saved heap. This usually results in considerable space savings, since all of the system code and
much of the rest of the base heap remains the same. Second, on systems that support memory mapped
files, saved heaps (including incremental heaps) are simply mapped into memory, reducing start-up time to
a minimum and allowing processes to share portions of the heap that have not been modified.

1.7. Trace output

Trace output is no longer as “noisy” as in Version 4, and output values are aligned properly with respect to
the corresponding call. For nesting levels 10 or greater, a number in brackets is used in place of indentation
to signify nesting level. For example:

> (trace-let f ((x 15)) (if (= x 0) 1 (* x (f (- x 1))))))
|(f 15)
| (f 14)
| |(f 13)
| | (f 12)
| | |(f 11)
| | | (f 10)
| | | |(f 9)
| | | | (f 8)
| | | | |(f 7)
| | | | | (f 6)
| | | |[10](f 5)
| | | |[11](f 4)
| | | |[12](f 3)
| | | |[13](f 2)
| | | |[14](f 1)
| | | |[15](f 0)
| | | |[15]1
| | | |[14]1
| | | |[13]2
| | | |[12]6
| | | |[11]24
| | | |[10]120
| | | | | 720
| | | | |5040
| | | | 40320
| | | |362880
| | | 3628800
| | |39916800
| | 479001600
| |6227020800
| 87178291200
|1307674368000
1307674368000
>

The trace facility now also uses pretty-print to print the argument and return values, resulting in
more readable output for lines that would have wrapped in previous versions.

A new syntactic form, trace-define, is provided. trace-define is sometimes more convenient than
using define with trace-lambda, especially when modifying existing code.

Chez Scheme Version 5 Release Notes Page 3

1.8. New inspector commands

The interactive inspector now provides an “eval” command that permits the evaluation of arbitrary Scheme
expressions within the context of a frame or procedure environment. The values of frame and procedure
locations are bound within the evaluated expression to identifiers of the form %n, where n is the location
number displayed by the inspector. The values of named locations are also bound to the name.

The interactive inspector also now permits frame and procedure variables considered “assignable” by the
compiler to be modified via a set! command. The lower-level object inspector similarly permits assignable
variables to be modified via a new set! message. Assignable variables are generally limited to those for which
the user program contains an assignment. Nonassignable variables cannot be modified since permitting such
modifications would violate assumptions made by the compiler and run-time system with potentially unsafe
or misleading results.

1.9. Foreign procedure interface enhancements

Two new foreign procedure argument/return types, “fixnum” and “single-float,” have been added. The
“fixnum” type is used to communicate numbers in the fixnum range and is slightly more efficient than the
“integer-32” type. The “single-float” type is used to communicate floating point values to or from C routines
expecting or returning single floats. Scheme “flonums” (inexact real numbers), represented internally as
double floats, are converted to single floats, and single-float return values are converted to Scheme flonums
automatically when the single-float specifier is used.

The “string” argument type now accepts #f as an input, converting it to the null pointer (0). This
makes it consistent with the “string” return type.

Version 5 also includes support for two additional new foreign procedure parameter and return
types on the MIPS-based Decsystem/Decstation and Silicon Graphics systems: foreign-object and
foreign-pointer. These parameter types allow arbitrary foreign structures to be passed into and returned
from foreign procedures. Foreign objects are represented in Scheme as Scheme strings, and foreign pointers
are represented as integers. Support for this feature on non-MIPS platforms is not planned at this time.

1.10. Block I/O

Version 5 includes support for block reads and writes to any port, through the procedures block-read and
block-write. Both procedures accept three arguments: a port p, a string s, and a count n. For reads,
the system reads n bytes from p and places them in s; for writes, the system writes n bytes from s to p.
Block I/O can be much more efficient than character-by-character I/O. In combination with file-position

and file-length, the block I/O operations allow arbitrary file manipulations to be written directly and
efficiently in Scheme.

1.11. Pretty printer control parameters

Three new pretty-printer control parameters have been added. The parameter pretty-initial-indent

is used to tell the pretty-printer when the output starts in some column other than column zero. The
parameter pretty-standard-indent determines the default indentation for various expressions, such as let.
The parameter pretty-maximum-lines determines how many lines pretty print emits; no limit is imposed
when the default setting of #f is used.

1.12. Compile-time argument count checks

Significantly more compile-time argument count checks are performed in Version 5. Calls to most locally-
bound procedures called within a given top-level expression are checked, and appropriate errors are signaled.

1.13. Rebinding reset-handler during initial load

Rebinding reset-handler within a file loaded from the command line now has the affect of trapping error
resets, just as it does for files loaded once the initial waiter has been started.

Chez Scheme Version 5 Release Notes Page 4

1.14. Conversion of flonums to fixnums

An efficient flonum to fixnum conversion procedure, flonum->fixnum, has been added. This procedure returns
the truncated fixnum equivalent of any flonum whose truncated value is in the fixnum range. flonum->fixnum
can be significantly more efficient than the alternative of first truncating the flonum, then converting the
result to a fixnum using inexact->exact.

1.15. New support for primitive references

The #%id syntax supported by Version 4 has been expanded to allow two new forms: #2%id and #3%id.
As before, #%id is equivalent to (\#primitive id); #2%id is equivalent to (\#primitive 2 id) and #3%id

is equivalent to (\#primitive 3 id). The identifier id must name a valid primitive. When used as the
procedure expression in an application, the #2%id syntax causes the application (but not its subexpressions)
to be treated as if it were at optimize-level 2, while the #3%id syntax causes the application to be treated as
if it were at optimize-level 3.

2. Performance Enhancements Since Version 4

2.1. Faster procedure calls

Calls to locally-bound procedures are typically much more time and space efficient in Version 5 than in
previous versions. The compiler analyzes the code to determine which local procedures require access to
their closures (where free variables are stored), and to determine the entry points for each supported number
of actual parameters. Calls to these procedures are made directly to the appropriate entry point, instead
of indirectly through the closure as had been done, thereby avoiding memory indirects and argument count
checks. No closure is created (at the point of definition) or loaded (at the point of call) for local procedures
that do not require them.

In addition, when a list is created for a local procedure with a “dot” interface, the list is created at the
point of call, where the length of the list is known, rather than on entry to the call, where more complex
code to handle variable numbers of arguments would be needed.

Other improvements have been made in the treatment of both local and global procedure calls, reducing
the number of instructions and memory references used in some cases.

2.2. Improved register allocation

The register allocator now makes significantly better use of hardware registers for procedure parameters,
local user variables, and compiler temporaries, resulting in a significant reduction in the amount of memory
traffic and a substantial increase in performance.

2.3. Improved code generation

The performance of the majority of Chez Scheme primitives has been improved at all optimize levels due
to improvements mentioned elsewhere, improved code generation strategies, and careful recoding in many
instances. Notably improved primitives include apply, assoc, assv, for-each, fxmax, fxmin, fxremainder,
length, make-string, make-vector, map, member, memv, remove, remv, remq, string->uninterned-symbol,
unread-char, and write-char (to console) at all optimize levels; caar, cadr, . . . , cddddr, char=?, char<?,
char<=?, char>?, char>=?, char->integer, fx1+, fx1-, fx*, fx/, fxeven?, fxlogand, fxlognot, fxlogor,
fxlogxor, fxnegative?, fxnonpositive?, fxnonnegative?, fxpositive?, fxquotient, fxodd?, fxsll,
fxsra, fxsrl, fxzero?, integer->char, set-car!, set-cdr!, string-length, string-ref, string-set!,
vector-length, vector-ref, and vector-set! at optimize level 2; and vector, string, and list* at op-
timize level 0;

Chez Scheme Version 5 Release Notes Page 5

2.4. Quicker compile for simple expressions

In previous versions, certain simple expressions typed into Chez Scheme, loaded from a source file, or
passed to eval at optimize level 0 under the default value of current-eval were interpreted rather than
compiled. This results in a significant savings in terms of compile time for simple expressions, noticeable
primarily when repeated calls to eval are made. This behavior has been extended to a larger class of
expressions (nearly all expressions that do not create procedures) and to all optimize levels. A new parameter,
compile-interpret-simple, may be set to false to force compilation rather than interpretation of these simple
expressions at all optimize levels.

2.5. Reduced gensym overhead

gensym is now about 25 times faster, primarily because no name is generated for the gensym until and unless
it is passed as an argument to symbol->string, such as when it is printed. Gensym name generation has
been improved as well, so that gensym cost is greatly reduced (by about a factor of 3) even if the name is
actually generated.

2.6. Increased initial collect-trip-bytes

In recognition of the prevalence of larger memory sizes in modern computer systems, the initial value of
collect-trip-bytes (the number of bytes of heap allocation permitted between collections) has been raised
from 218 bytes (256 kilobytes) to 220 bytes (one megabyte). Some programs on some systems may work
better with a smaller number; if the Scheme process terminates due to insufficient heap space availability,
or if excessive paging is noticed, the value should be set lower. Even on machines with sufficient virtual
and physical memory, cache hit rates and therefore overall performance may decrease with larger values, so
experimentation is needed to find the optimal amount.

2.7. Improved foreign-procedure code generation

In previous versions, foreign procedures always checked their argument types, regardless of optimize level. In
Version 5, this checking is disabled at optimize-level 3, reducing both code-size and time overhead. Argument
checking remains enabled at optimize levels below 3, along with range checks for “char” and “fixnum” return
types.

The volume of code generated for foreign-procedures has been greatly reduced in many cases through
the use of more generic error handling procedures and out-of-line code for the more complex conversions,
i.e., bignum to int.

2.8. Reduced load time

Load time for both source and object files has been improved, most notably on DEC MIPS-based systems
under Ultrix. See Section 3 under “Cache flushing overhead.”

3. Bugs Fixed Since Version 4

3.1. Bug in quotient and remainder

A bug in quotient and remainder that caused certain operations involving negative inexact numbers to
return incorrect results has been fixed.

3.2. Bug in continuation handling code

A bug in the continuation handling code that could result in memory faults or large amounts of memory
being consumed has been fixed.

Chez Scheme Version 5 Release Notes Page 6

3.3. Compiler transformation bug

Some malformed expressions that appear similar to named let forms that were incorrectly recognized as
named let forms are now flagged as errors. For example, ((letrec ((x (lambda () 0))) x) 1) was treated
as ((letrec ((x (lambda () 0))) x)) but now properly results in an incorrect number of arguments error.

3.4. Bug in trace-define

The expansion for the “defun” syntax of trace-define did not work properly; this has been fixed.

3.5. Expanding foreign procedure names

The name field in a foreign-procedure form is now expanded by the macro expander.

3.6. Foreign procedure “integer-32” return type

A bug that caused a return value of −8000000016 to be converted improperly when the return type of a
foreign procedure is integer-32 has been fixed.

3.7. Cache flushing overhead.

A mechanism for reducing the effects of inexplicably long hardware cache flush times on DEC MIPS-based
systems under Ultrix has been implemented. This mechanism dramatically reduces load times for both
Scheme source and object files containing many expressions. A file containing 100 individual expressions
that might have taken 30 seconds to load under Version 4.1 might now take less than 1/2 second. Wrapping
entire source files in single begin expressions to reduce load time, as advised in some earlier release notes, is
no longer needed.

The same mechanism has resulted in noticeable but less dramatic load-time improvements on other
platforms.

4. Compatibility Issues

As noted in Section 1 under “Multiple values,” the engine interface has changed in a non-upwardly compatible
fashion. Code that uses engines must be updated to account for this change.

As noted in Section 1 under “Support for new platforms,” load-shared-object must now be used on
some platforms in place of load-foreign and provide-foreign-entries.

As noted in Section 1 under “Lexical macros,” macros written in expansion-passing style or using
extend-syntax must be rewritten to use syntax-case or syntax-rules, although a compatibility mode
allowing the use of these older macro system is available as noted. Since the compatibility package disables
the new macro system, syntactic forms defined using one of the old macro systems cannot be intermixed
within the same top-level expression as syntactic forms defined using the new macro system.

The default “standard indentation” used by the pretty printer is now 1 rather than 2, allowing nested
code to be displayed in fewer columns. Most code will not be affected by this change. Code that depends
on the old default should set the parameter pretty-standard-indent to 2.

Chez Scheme Version 5 Release Notes Page 7

