
Distributing Applications with Petite Chez Scheme

R. Kent Dybvig

Cadence Research Systems
dyb@scheme.com

November 1998

Introduction

Petite Chez Scheme is a fast, reliable, and full-featured implementation of the Scheme programming
language. It is fully compatible with the complete Chez Scheme system but uses a high-speed
threaded interpreter in place of Chez Scheme’s incremental native-code compiler. Programs written
for Chez Scheme run unchanged in Petite Chez Scheme as long as they do not depend specifically
on the compiler. In fact, Petite Chez Scheme is built from the same sources as Chez Scheme, with
all but the compiler sources included. Petite Chez Scheme may be used and redistributed without
license fee or royalty for any purpose, including for resale as part of a commercial product. For
details, see the Petite Chez Scheme Software License Agreement, a copy of which is included as an
appendix to this note.

Although suitable for use as a stand-alone Scheme system, Petite Chez Scheme was conceived
as a run-time system for compiled Chez Scheme applications. This note describes how to create
and distribute such applications. The following section briefly describes the characteristics of Petite
Chez Scheme and how it compares with Chez Scheme. The remaining sections detail how to prepare
application source code, how to build and run applications, and how to distribute them.

Characteristics of Petite Chez Scheme

Although interpreter-based, Petite Chez Scheme evaluates Scheme source code faster than might
be expected. Some of the reasons for this are listed below.

• The run-time system is fully compiled, so library implementations of primitives ranging from
+ and car to sort and printf are just as efficient as in Chez Scheme, although they cannot be
open-coded as in code compiled by Chez Scheme at high levels of optimization.

• The interpreter is itself a compiled Scheme application. Because it is written in Scheme,
it directly benefits from various characteristics of Scheme that would have to be dealt with
explicitly and with additional overhead in most other languages, including proper treatment
of tail calls, first-class procedures, automatic storage management, and continuations.

• The interpreter employs a preprocessor that performs various optimizations and converts the
code into a form that can be interpreted efficiently. In fact, the preprocessor performs many
of the same source-level optimizations as Chez Scheme’s compiler.

c© 1998 Cadence Research Systems.

1

Nevertheless, compiled code is still far more efficient for most applications. The difference between
the speed of interpreted and compiled code varies significantly from one application to another, but
can amount to a factor of ten or more.

Two additional limitations result directly from the fact that Petite Chez Scheme does not
include the compiler. First, since foreign-procedure forms result in the generation of machine code
that is tailored to a specific set of argument and return value types, foreign-procedure forms cannot
be processed by the interpreter. Compiled versions of foreign-procedure forms may be included in
compiled code loaded into Petite Chez Scheme, however. Second, since inspector information is
attached to code objects generated only by the compiler, source information and variable names are
not available for interpreted procedures or continuations into interpreted procedures. This makes
the inspector less effective for debugging interpreted code than it is for debugging compiled code.

Except as noted above, Petite Chez Scheme does not restrict what programs can do, and like
Chez Scheme, it places essentially no limits on the size of programs or the memory images they
create.

Preparing Application Code

While it is possible to distribute applications in source-code form, i.e., as a set of Scheme source files
to be loaded into Petite Chez Scheme by the end user, distributing compiled code has two major
advantages over distributing source code. First, compiled code is usually much more efficient, as
discussed in the preceding section, and second, compiled code is in binary form and thus provides
more protection for proprietary application code. For these reasons, we suggest that applications
be compiled.

Application source code generally consists of a set of Scheme source files possibly augmented
by foreign code developed specifically for the application and packaged up in shared libraries (also
known as shared objects or, on Windows, dynamic link libraries). The following assumes that any
shared library source code has been converted into object form; how to do this varies by platform.
The result is a set of one or more shared libraries that are loaded explicitly by the Scheme source
code during program initialization.

Once the shared libraries have been created, the next step is to compile the Scheme source files
into a set of Scheme object files. Doing so typically involves simply invoking compile-file on each
source (“.ss”) file to produce the corresponding object (“.so”) file. This may be done within a build
script or “make” file via a command line such as the following:

echo ’(compile-file "filename")’ | scheme

which produces the object file filename.so from the source file filename.ss.
It may be necessary to make some adjustments to a file to be compiled if the file contains

expressions or definitions that affect the compilation of subsequent forms in the file. One way to
do this is to remove the forms that affect compilation and place them into a separate file that is
loaded prior to compilation. Another way is to use eval-when, which is discussed in detail in the
Chez Scheme User’s Guide. It may also be that one file defines a set of syntactic abstractions or
modules that must be present during the compilation of another file. In this case, the former file
must be compiled first in the same session as the latter file, or “visited” via visit before the second
file is compiled. Again, see the Chez Scheme User’s Guide for details.

Although it is possible to intersperse initialization expressions and definitions at the top level
of a Scheme source file, we suggest that initialization expressions be encapsulated in one or more
initialization procedures that are explicitly invoked when the application is created or run. Initial-

2

ization procedures to be invoked when the application is created, i.e., when the heap is created
as described in the next section, may be invoked by placing explicit calls to them in the last file
loaded into the system. Initialization procedures to be invoked when the application is run may be
invoked by the Scheme startup procedure, which is described below.

The Scheme startup procedure determines what the system does when it is started from a
saved heap. The default startup procedure loads the files listed on the command line (via load)
and starts up a new café. The startup procedure may be changed via the parameter scheme-start.
The following example demonstrates the installation of a variant of the default startup procedure
that prints the name of each file before loading it.

(scheme-start

(lambda fns

(for-each

(lambda (fn)

(printf "loading ˜a . . ." fn)

(load fn)

(printf "˜%"))
fns)

(new-cafe)))

A typical application startup procedure would first invoke the application’s initialization proce-
dure(s) and then start the application itself:

(scheme-start

(lambda fns

(initialize-application)

(start-application fns)))

Any shared libraries that must be present during the running of an application must be loaded
during initialization, whether they are loaded when the application is built or not. In addition,
all foreign procedure expressions must be executed or reexecuted after the shared libraries are
loaded so that the addresses of foreign routines are correctly recorded with the resulting foreign
procedures. The following demonstrates one way in which initialization might be accomplished for
an application that links to a foreign procedure show state in the shared library state.so:

(define show-state)

(define app-init

(lambda ()

(load-shared-object "state.so")
(set! show-state

(foreign-procedure "show state" (integer-32)

integer-32))))

(scheme-start

(lambda fns

(app-init)

(app-run fns)))

Building and Running the Application

Building and running an application is straightforward once all shared libraries have been built and
Scheme source files have been compiled to object code.

3

Although not strictly necessary, we suggest that you concatenate your Scheme object files into a
single object file. This may be done on Unix systems simply via the “cat” program or on Windows
via copy. Placing all of the object code into a single file simplifies both building and distribution
of applications.

With the Scheme object code contained within a single “boot” file, it is possible to run the
application simply by loading the boot file into Petite Chez Scheme, e.g.:

petite app.boot

where app.boot is the name of the application boot file, and invoking the startup procedure:

> ((scheme-start))

It is usually preferable, however, to construct a Petite Chez Scheme heap that contains the ap-
plication. The heap should be built on the system upon which the application will ultimately be
run, i.e., on the end-user’s computer system. The following command line constructs a heap file
app.heap from an application boot file app.boot:

echo "(exit)" | petite app.boot -s1 app.heap

When using the Windows command shell, it may be necessary to omit the double quotes around
the call to exit. Once the heap has been built, the application may be run simply by invoking
Petite Chez Scheme as follows:

petite -h app.heap

The details of application start-up can be hidden from the end user via a shell script or batch file.
A Unix shell script to invoke an application might look like:

APPLIB is set during installation to reflect location of app heap file

APPLIB=/usr/local/lib/app

export APPLIB so that the application can find other application

library files

export APPLIB

petite -h $APPLIB/app.heap -- $*

The command-line argument “--” tells Petite Chez Scheme to pass along all remaining arguments
as uninterpreted strings to the Scheme startup procedure.

Distributing the Application

Distributing an application involves creating a distribution package that includes, at a minimum,
the following items:

• the Petite Chez Scheme distribution,

• the application boot file,

• any application-specific shared libraries,

• the application script or batch file (if not built from scratch by the installation script), and

• an application installation script.

The application installation script should allow the installation of Petite Chez Scheme if not already
installed on the target system. It should create a directory to contain the application heap file, and

4

create the heap file in that directory by invoking Petite Chez Scheme with the boot file and using
the “-s1” option as shown in the preceding section. It should also install the application shared
libraries, if any, either in the same location or in a standard location for shared libraries on the target
system. Finally, it should build or edit the application script or batch file to reflect the location of
the heap file and install the script or batch file on the target system. A sample installation script
for Unix platforms is provided as an appendix to this note. For Windows, we suggest the use of an
installation building program, such as Wise Installation System or InstallShield.

Contact us if you do not have a copy of the Petite Chez Scheme distribution or if the distribution
you received combines both Chez Scheme and Petite Chez Scheme. Although Petite Chez Scheme
is freely redistributable, the complete Chez Scheme system may be used only under direct license
from Cadence Research Systems and may not be redistributed.

Appendix: Sample Unix Installation Script

The script below demonstrates how to perform a straightforward installation of a Scheme applica-
tion on a Unix-based platform. The script makes the following assumptions, any of which may be
changed by altering the script’s application configuration parameters:

• the name of the application to install is app,

• the machine type upon which the installation will take place is sps2 (Sparc Solaris 2.X),

• a single shared library, libapp.so, is included in the distribution, and

• a single boot file, app.boot, is included in the distribution.

The script also sets the default location for executables to /usr/local/bin, shared libraries to
/usr/local/lib, and the application heap to /usr/local/lib/app. These settings would typically
be open to change by the end user; a friendlier script would query the user to verify that these
settings are appropriate.

The script first installs Petite Chez Scheme, then installs the shared libraries, then builds the
heap and the executable shell script.

set installation directories

bindir=/usr/local/bin

libdir=/usr/local/lib

applibdir=/usr/local/lib/${app}
set application configuration

app=app

machine=sps2

libs=lib${app}.so
boot=${app}.boot
heap=${applibdir}/${app}.heap
install Petite Chez Scheme

(cd csv6.0/custom; make petiteinstall m=${machine})
install the shared libraries

(umask 022; mkdir -p ${libdir})
cp ${libs} ${libdir}
chmod 444 ${libs}

5

create the application heap

(umask 022; mkdir -p ${applibdir})
echo | petite ${boot} -s1 ${heap}
chmod 444 ${heap}
create the executable shell script

(umask 022; mkdir -p ${bindir})
echo ’#! /bin/sh’ > ${bindir}/${app}
echo ’exec petite -h’ ${heap} ’-- $*’ >> ${bindir}/${app}
chmod 555 ${bindir}/${app}

Appendix: Petite Chez Scheme Software License Agreement

Cadence Research Systems
Petite Chez Scheme(tm) Software License Agreement

BEFORE PROCEEDING WITH THE INSTALLATION, YOU MUST FIRST READ THIS ENTIRE
AGREEMENT. BY PROCEEDING WITH THE INSTALLATION, YOU EXPRESSLY AGREE TO BE
BOUND BY THE TERMS AND CONDITIONS OF THE AGREEMENT. IF YOU DO NOT AGREE TO
ALL OF THE TERMS AND CONDITIONS OF THIS AGREEMENT, DO NOT PROCEED WITH THE
INSTALLATION.

1. License Grant

Cadence Research Systems (hereinafter, Cadence) grants you (hereinafter, Licensee) a nonexclusive license
to use Petite Chez Scheme and associated documentation (hereinafter, Licensed Product), to combine the
Licensed Product with other products to form Aggregate Products, and to redistribute the Licensed Product
or Aggregate Products without royalty. All Aggregate Products must include the Licensed Product in its
entirety. No payment may be received by Licensee for redistribution of the Licensed Product, although
nothing in this Agreement shall prevent Licensee from receiving payment for other portions of Aggregate
Products. Any redistribution of the Licensed Product or Aggregate Products is subject to all restrictions
set forth in this Agreement. Licensee may not reverse compile, disassemble, or otherwise reverse engineer
the Licensed Product.

2. Title

Title, copyright, and all other intellectual property rights for the Licensed Product remain at all times with
Cadence. The Licensee agrees not to alter, change, or remove from the Licensed Product any identifications,
including copyright notices, which indicate ownership thereof by Cadence.

3. Export

You may not export or re-export the Licensed Product or any underlying information or technology except
in full compliance with all United States and other applicable laws and regulations of all applicable countries.

4. Warranty

LICENSEE ACKNOWLEDGES THAT THE LICENSED PRODUCT IS BEING SUPPLIED AS-IS. WITH-
OUT ANY ACCOMPANYING SUPPORT SERVICES OR FUTURE UPDATES. Cadence represents that
it is unaware of any claim or any basis for any claim that the Licensed Product infringes on any third party
patents, copyrights, or trade secret rights. However, CADENCE DOES NOT REPRESENT OR WAR-
RANT THAT THE LICENSED PRODUCT IS FREE OF INFRINGEMENT OF ANY THIRD PARTY
PATENTS, COPYRIGHTS, OR TRADE SECRET RIGHTS. Furthermore, CADENCE MAKES NO WAR-
RANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED, AS TO ANY
MATTER NOT EXPRESSLY SET FORTH HEREIN, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

5. Limitation of Liability

6

Licensee agrees that Cadence shall not be held to any liability with respect to any claim by Licensee or
a third party arising from or on account of the use of the Licensed Product, regardless of the form of
action, whether in contract or tort, including negligence. IN NO EVENT WILL CADENCE BE LIABLE
FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES OF ANY NATURE WHATSOEVER, EVEN IF
CADENCE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES IN ADVANCE.

6. US Government Customers

The Licensed Product is classified as ”commercial computer software” developed at private expense. If
delivered to the Department of Defense, the Licensed Product is delivered subject to the terms of this
Agreement and either (i) in accordance with DFARS 227-7202-1(a) and 227.7202-3(a), or (ii) with restricted
rights in accordance with DFARS 252.227-7013(c)(1)(ii) (Oct. 1988), as applicable. If delivered to any other
Federal agency, the Licensed Product is restricted computer software delivered subject to the terms of this
license agreement and (i) FAR 12.212(a), (ii) FAR 52.227-19, or (iii) FAR 52.227-14 (ALT III), as applicable.

7. Term and Termination

The effective date of this Agreement shall be the date of the first installation of the Licensed Product by
Licensee, and its term is perpetual, except that Cadence may terminate this Agreement if Licensee fails to
comply with any of the terms and conditions of this Agreement. Upon termination, Licensee shall cease use
and redistribution of the Licensed Product and shall destroy or return to Cadence all copies of the Licensed
Product. Licensee’s obligations under Paragraph 5 shall survive any termination of this Agreement.

8. Governing Law

This Agreement shall be governed by the laws of the United States of America and the State of Indiana, both
as to interpretation and performance. It constitutes the complete and exclusive statement of the Agreement
between the parties with respect to the Licensed Product and supersedes all previous understandings, com-
mitments or agreements, oral or written. The provisions of this Agreement are severable, and in the event
that any provisions of this Agreement are determined to be invalid or unenforceable under any controlling
body of law, such invalidity or unenforceability shall not in any way affect the validity or enforceability of
the remaining provisions hereof. This Agreement may be modified only by a written agreement executed by
both Cadence and Licensee.

BY INSTALLING THIS SOFTWARE, YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREE-
MENT, THAT YOU UNDERSTAND IT, AND THAT YOU AGREE TO BE BOUND BY ITS TERMS
AND CONDITIONS.

Copyright c© 1998 Cadence Research Systems.
Petite Chez Scheme is a trademark of Cadence Research Systems.

7

